Scientists design new responsive porous material inspired by proteins
Scientists from the University of Liverpool have, for the first time, synthesized a new material that exhibits structural change and triggered chemical activity like a protein. In a research reported today (9 January 2019) in the journal Nature, a team of researchers produced a flexible crystalline porous material with small pores (< 1 nanometre) composed of metal ions and small peptide molecules that can change its structure in response to its environment to carry out specific chemical processes. Porous materials are widely used in industry as catalysts for the production of fuels and chemicals and in environmental remediation technologies as adsorbers for the removal of harmful compounds from air and water. These materials are rigid, with just one structure, unlike the proteins used by living systems to perform chemistry. Proteins can change their structures to carry out chemical processes in response to their environment. Like a protein, the new porous material can adopt multiple structures, and it can be controllably transformed from one structure to another by changes in its chemical environment. This allows it to perform a chemical process, such as taking up a particular molecule from its surroundings, in response to an imposed change in the surrounding solution. Professor Matt Rosseinsky, who led the research, said “These porous materials use the same atomic-scale mechanisms as proteins to switch between structures, which gives us the opportunity to develop new ways to manipulate and change molecules with synthetic materials that are inspired by biology. Read more
Let’s innovate together
To find out more about how we can work together, please enter your details below. More contact options